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1 Introduction

The unfolding of the European Sovereign Debt Crisis shows that extreme events in the financial markets appear

in clusters instead of in isolation. And this triggers a surge of interest in the role of contagion in the risk

clustering. Testing for the existence of contagion and quantifying the size of it is important for economists

and policymakers. This paper proposes a new mutual exciting regime-switching model where crises can spread

contagiously across countries.

The first challenge to study contagion regards its definition. Asset returns exhibit co-movement due to ex-

posure to common factors and spillovers. Is contagion just the normal time inter-dependence? Or does it reflect

an increase in the co-movement during periods of crisis? This paper does not aim to contribute to this theoret-

ical debate. Rather, I adopt the theoretical framework from the seminal paper of Forbes and Rigobon (2002),

which defines contagion as the significant increase in the co-movement beyond what can be explained by normal

time interactions. In particular, inter-dependence and contagion are distinguished. While inter-dependence is

a result of normal market linkages, contagion is a breakdown of the normal time transmission regime.

Our second challenge is the specification of the crisis regime. Many studies implicitly assume that the cri-

sis regime can be known a priori. For example, the correlation-based test for contagion (Boyer et al. (1997),

Rigobon (2003), Corsetti et al. (2005)), the factor-model-based test for contagion (Dungey et al. (2002), Dungey

et al. (2006), Dungey and Martin (2004), Bekaert and Harvey (2003)), and the structural break test for con-

tagion (Bekaert et al. (2014), Beirne and Fratzscher (2013)) all rely on a priori identification of the crisis

regime. These methods, while being very popular, given they are simple to implement and interpret, suffer

from several problems. First of all, they implicitly assume that the crisis regime is continuous, which is not

true according to the empirical findings in this paper. In addition, the ex-post nature of these methods makes

them not particularly useful for detecting early-warning signals. Another strand of literature assumes the crisis

regime is associated with some extreme values of the observed dependent variable. For example, Pesaran and

Pick (2007) and Metiu (2012) assumes a country is in crisis regime when its endogenous performance variable

is above a pre-specified threshold value. Caporin et al. (2018), in a similar vein, associates crisis regime with

some high quantiles of the observed dependent variable. However, crises, in many cases, are more complicated

than extreme values of a performance indicator. And they tend to be unobserved processes governed by several

mechanisms.

The third challenge we face is the dynamics of the regime-switching process. There could be many reasons

for a switch from the normal to crisis regime. In particular, we are interested in the role of contagion in the

regime-switching process. That is, for one country, whether the transition to the crisis regime is more likely

when other countries are in the crisis regime in the last period (i.e., crises spread contagiously across countries)?

Moreover, how to quantify the strength of contagion, if it exists?

This paper proposes a new mutual exciting regime-switching model where crises can spread contagiously

across countries. Each country has its own hidden stochastic process that determines whether the country is

in a normal or crisis state. The country-specific process is governed by some common macroeconomic factors,
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country-specific fundamentals, and other countries’ past states. Contagion is defined as a rise in the transition

probability to the crisis regime when other countries are in crisis in the past state, after controlling for other

mechanisms that drive the switching process. Inter-dependence and contagion are distinguished. There are

three avenues for inter-dependence in the model. Firstly, asset returns are exposed to common factors and

spillovers from others. Secondly, innovations to asset returns are allowed to be cross-sectionally correlated.

Lastly, countries’ hidden stochastic processes are subject to common risk factors.

The key element in the model that captures the multi-country contagion is the mutual exciting regime-

switching process. The idea is closely related to some recent papers by Ait-Sahalia et al. (2014) and Aı̈t-Sahalia

et al. (2015). To capture the propagation of jumps across markets, those authors model the jump intensity

using the mutual exciting jump process, also known as Hawkes process (Hawkes (1971b), Hawkes (1971a))

where the jump in one market could increase the probability of future jumps elsewhere. In their spirits, I model

multi-country contagion using a mutual exciting regime-switching process. Under the framework, one country

being in the crisis regime could increase the transition probability to the crisis regime for other countries. As in

Ait-Sahalia et al. (2014) and Aı̈t-Sahalia et al. (2015), the cross country contagion is probabilistic rather than

certain. And the model goes beyond their work by allowing for a richer contagion pattern. In addition to a

break in the mean equation, the model can also accommodate a break in the variance. The dynamics in the

variance could be especially important for crisis episodes where increases in volatility are the major symptomatic.

Using the new approach, I revisit the sovereign risk contagion in the euro area. I use daily 10-year sovereign

bond spreads of six euro area countries, including Greece, Ireland, Portugal, Spain, Italy (GIPSI countries), and

France from 12/02/2008 to 01/12/2011. German government bond yields of the same maturity are used as the

benchmark. I deliberately end the sample before the European Central Bank (ECB) announced the Long-Term

Refinancing Operations (LTRO) to avoid the clustering of switchings due to the intervention. Some interesting

empirical results are found. Firstly, sovereign bond spread pricing functions are highly regime-dependent as

there are striking shifts in market pricing behaviors. In the crisis regime, most sample countries experience a

significantly positive jump in the intercept. There is a break of exposures to common risk factors. And the

directions of the shifts are opposite to the sign of exposures in the normal regime. This might because the

risk aversion and uncertainty both start falling since Spring 2009 while the euro area sovereign spreads begin

to skyrocket after 2010. It suggests that the factor cannot help to interpret the sharp increases in euro area

sovereign bond spreads during the European debt crisis. On the other hand, regional risk spillovers explain

more variations in the sovereign bond spreads during periods of crisis as the vector auto-regressive coefficients

are much larger in magnitude in the crisis regime. Surprisingly, Greece plays a less important role in directly

propagating shocks to others. This is because investors start to isolate Greek bonds from other countries when

the Greek default is inevitable. As a result, other countries’ bond spreads decouple from the Greek bond spread.

Secondly, although Greece is not propagating a lot of shocks to others in a linear way, it is the key player in

terms of non-linear contagion. The break in Greece’ bond spread pricing function comes earlier, which makes

other countries more likely to switch to the crisis regime. All other sample countries, except Greece itself, are

subject to considerable contagion effect (i.e., their transition probabilities to the crisis regime all significantly

increase when their neighbors are in crisis in the past state). For those countries, multi-country contagion plays

a more important role than common risk factors and even country-specific fundamentals in determining their
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transition probabilities to the crisis regime.

The rest of this paper is organized as follows: Section 2 introduces the mutual exciting regime-switching

model. Section 3 discusses the Bayesian estimation procedure and inference. Section 4 presents the empirical

application. Section 5 concludes.

2 Mutual Exciting Regime-Switching Model and Contagion

Consider the following regime-switching model:

y1t = α1(s1t) + x′1tβ1(s1t) + h
1/2
1t (s1t)ε1t

...

ynt = αn(snt) + x′ntβn(snt) + h
1/2
nt (snt)εnt

(1)

where yit is a performance indicator for country i at time t for i = 1, . . . , n, t = 1, . . . , T . xit is a k × 1 vec-

tor of explanatory variables for country i at time t, which includes exogenous observed common factors and

country specific variables. The country-specific state variable sit is a hidden discrete stochastic process. And

the process {sit} is assumed to be irreducible and aperiodic first order Markov chain with finite state space

{0, . . . ,K − 1}. Different realizations of sit admit different dynamics in the mean and in the variance. It is

assumed that εt ∼ N (0,Σ), where εt = (ε1t, . . . , εnt)
′ ∈ Rn for t = 1, . . . , T and Σ is a n-dimensional pos-

itive definite matrix with potentially non-zero off-diagonal entries. The variance of the random disturbance

term hi(sit)εit depends on the realization of states via the volatility multiplier hit(sit). As for the parameters in

the mean equations, the intercepts αi(sit) and slopes βi(sit) are also allowed to vary over the realizations of {sit}.

Inter-dependence and contagion are distinguished in the model. While the inter-dependence is captured

by the exposure to common factors, normal time interactions, and the non-zero off-diagonal elements in Σ,

contagion is introduced by the mutual excitement component in the country-specific hidden stochastic process

{sit}. The evolution of {sit} is sufficiently described by the K ×K time-varying transition matrix, which are

governed by some exogenous variables zit and all countries’ past states st−1 = (s1t−1, . . . , snt−1). We say there

is contagion from j to i if the regime transition probability to crisis for i increases when j is in crisis in the last

period, after controlling for other mechanisms that drive the switching process. For simplicity, in this paper,

I only discuss the two-regime 1 (K = 2) case so that we can have a natural crisis regime and normal regime

distinction. But generalization to more than two regimes is straightforward. I let only the first lagged states

to enter the transition equation so that the vector of states sit = (s1t, . . . , snt) still has the Markov property.2

The transition probability from state k to state l (l, k = 0, 1 where s = 0 denotes the normal state and s = 1

1Allowing for more regimes imposes no theoretical difficulties. But it could be computationally challenging when the number of

countries n is big.
2More recent methodologies like forward-filtering backward sampling (FFBS) algorithm (Frühwirth-Schnatter (2006)) could be

applied to allow for richer interaction pattern in different chains. This could be an interesting extension since letting the transition

probability to depend on the whole path of the chain could be used to accommodate more interesting phenomena. For example,

different duration of past bad states might change the transition probability by a different extent. Maybe some smoothing functions

could be applied to summarise the information contained in the past state.
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denotes the crisis state) is specified as follows:

P (sit = l | sit−1 = k,zit, s−it−1) = P ikl,t(zit, s−it−1), where l, k = 0, 1 (2)

where s−it−1 is the vector of states for countries other than i at t−1. For the two-regime case, the unit-specific

unobserved state variables follow a probit specification as in equation (3). This can be generalized using a logit

model if there are more than two regimes. Directed contagion effect from j to i is characterized by a positive

λij .

sit =

0 if uit < zit
′γi +

∑
j 6=i λijsjt−1

1 if uit ≥ zit′γi +
∑
j 6=i λijsjt−1 where uit ∼ N (0, 1)

(3)

For the identification of a regime-switching model, one needs to deal with the label switching problem.

A common way to achieve identification is to impose constraints on the parameters. This is used a lot in

macroeconomic literature, and different regimes can have natural interpretations. In the empirical literature on

contagion, the normal and the crisis regimes are often identified by different levels of asset returns’ volatilities

(Corsetti et al. (2005), Dungey* et al. (2005)). Given that line of reasoning, one reasonable identification

restriction for the above contagion model is

hit(sit = 0) = 1 and hit(sit = 1) > 1 (4)

where hit(sit = 1) is the volatility multiplier parameter.3 This identification restriction does not impose an

increase in the exposures to factors or a jump in the intercept. Whether a crisis state is associated with

a significant break in the pricing function is left to be found out. Of course, this is not the only plausible

identification restriction. Different restrictions could be applied, depending on the problem at hand.

3 Bayesian Inference by Gibbs Sampling

Putting everything together, for a two-regime case we have:

yit = αi(sit) + x′itβi(sit) + h
1/2
it (sit)εit for i = 1, . . . , n

sit =


0 if − uit ≥ zit′γi +

∑
j 6=i λijsjt−1

1 if − uit < zit′γi +
∑
j 6=i λijsjt−1 for i = 1, . . . , n

εt =


ε1t
...

εnt

 ∼ N (0,Σ) and uit ∼ N (0, 1) for i = 1, . . . , n

(5)

The density function of observed performance variables conditional on states and all the parameters in the

model, can be factorized as

f(YT | ST , X,θ) = f(Y1 | S1, X,θ)

T∏
t=2

f(yt | Yt−1, St, X,θ) (6)

3For a two-regime case, another popular way to parameterize the regime-dependent volatility is to use (1 + vi ∗ Sit)εit. And

vi can be interpreted as the proportional increase in volatility in the crisis state. Am equivalent identification restriction for such

parameterization is vi > 0.
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where Yt = (y1, . . .yt) is the history of yt = (y1t, . . . , ynt) up to time t, X = (x11
′, . . . ,x1t

′, . . . ,xn1
′, . . . ,xnt

′)′

is the matrix of exogenous regressors, Z = (z11
′, . . . ,z1t

′, . . . ,zn1
′, . . . ,znt

′)′ is the matrix of exogenous drivers

of the regime switching process, St = (s1, . . . , st) is the history of the states st = (s1t, . . . , snt) up to time t, and

θ = (θ1,θ2) is the collection of parameters in the model. We collect all the parameters in the main equation in

θ1 = (α,β,h,Σ) and all the parameters in the auxiliary regime-switching equation in θ2 = (γ,λ).4 In full, the

joint density of the observations and states, is simply the product of the conditional density given states and

the density of the states,

f(YT , ST | X,θ) = f(YT | ST , X,θ1)

T∏
t=2

P (st | st−1, Z,θ2)× P (s1) (7)

Direct calculations of the joint likelihood function are messy since brute force marginalization of equation (7)

involves 2n∗T summations over all possible state sequences {st}Tt=1. In this paper, Bayesian inference by Gibbs

sampling as described in Albert and Chib (1993) and Kaufmann (2015) is applied to avoid the messy calculations

involved in the direct evaluation of the joint likelihood function. For the simulation-based Bayesian procedure,

unobserved states are treated as unknown parameters. And they can be simulated given other parameters in

the model by Gibbs sampling.

We define the vector of latent indexes governing the transition process as s∗t = (s∗1t, . . . , s
∗
nt), where s∗it =

zit
′γi +

∑
j 6=i λijsjt−1 + uit. A key step in the procedure is to augment the data by s∗t (i.e., the latent indexes

s∗t are also treated as unknown parameters). As a result of the data augmentation, the full parameters needed

to be estimated are ψ = {θ, ST , S∗T }, where ST = {st}Tt=1 and S∗T = {s∗t }Tt=1 are the history of all states and

the history of all latent indexes respectively. Our objective is to derive a Markov chain such that its limiting

distribution is the joint distribution of interest. Let us divide the parameter set as ψ = (ψ1,ψ2,ψ3,ψ4,ψ5,ψ6)

where

ψ1 = {α,β}

ψ2 = {Σ}

ψ3 = {h}

ψ4 = {ST }

ψ5 = {S∗T }

ψ6 = {γ,λ}

(8)

Let [. | .] denotes the conditional distribution. The joint posterior distribution of ψ leads to very tractable

conditional structure. And to sample from the posterior distribution, we iterate over the following steps:

1. Specifying arbitrary initial values ψ0 and set i = 1.

2. Cycle through the full conditionals by drawing

• ψi1 from [ψ1 | ψ
i−1
2 ,ψi−13 ,ψi−14 ,ψi−15 ,ψi−16 ]

• ψi2 from [ψ2 | ψ
i−1
1 ,ψi−13 ,ψi−14 ,ψi−15 ,ψi−16 ]

• ψi3 from [ψ3 | ψ
i−1
1 ,ψi−12 ,ψi−14 ,ψi−15 ,ψi−16 ]

4α = (α1,0, α1,1, . . . , αn,0, αn,1),β = (β1,0,β1,1, . . . ,βn,0,βn,1). For a two-regime model, sit is a dummy variable so that αi,1

and βi,1 correspond to the level shift and slope shift respectively.
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• ψi4 from [ψ4 | ψ
i−1
1 ,ψi−12 ,ψi−13 ,ψi−15 ,ψi−16 ]

• ψi5 from [ψ5 | ψ
i−1
1 ,ψi−12 ,ψi−13 ,ψi−14 ,ψi−16 ]

• ψi6 from [ψ6 | ψ
i−1
1 ,ψi−12 ,ψi−13 ,ψi−14 ,ψi−15 ]

where the conditioning on YT , X and Z are suppressed.

3. Let i = i+ 1 and to back to the previous step.

The process generates a Markov chain, which under mild conditions (Tierney (1994)) has the joint distribution

of interest as the limiting distribution. The first M draws have to be discarded, which is called “burn-in”. After

the “burn-in-period”, the simulated values (ψi1,ψ
i
2,ψ

i
3,ψ

i
4,ψ

i
5,ψ

i
6) for i = M + 1, . . . ,M + K can be treated

as approximated sample from from the joint posterior distribution. To initialize the sampler, one need initial

values. I choose initial values with minimal prior information. The full conditionals and the choice of priors

are provided in the appendix. Once we have the posteriors, we can then obtain the credible interval, which is

analogous to the confidence interval in frequentist inference, for each parameter of interest.

4 Revisit Sovereign Credit Risk Contagion in the Eurozone

The econometric framework is applied to revisit the sovereign credit risk contagion in the Eurozone. We first

discuss the data and its properties. We then examine the drivers of the regime-switching process. In particular,

we are interested in the testing and quantification of multi-country contagion.

4.1 Data Description

Sovereign credit risk is measured by government bond yield spreads (relative to benchmark country Germany).

Daily sovereign bond spreads of six Eurozone countries, including Greece, Ireland, Portugal, Spain, Italy (GIPSI

countries), and France, are constructed using the difference between the 10-year sovereign bond yields of these

countries and that of Germany. The daily data spans from 12/02/2008 to 01/12/2011 and are downloaded

from Thomson Reuters Eikon. In the spirit of Caporin et al. (2018), we deliberately end the sample before

the European Central Bank (ECB) announced the Long-Term Refinancing Operations (LTRO) to avoid the

clustering of switchings due to the intervention.

Table 7 presents key macroeconomic fundamentals that affect credit conditions for the sample countries.

Germany has the highest credit ratings, the best average fiscal position, and the highest GDP growth within

the sample period. Sovereign bonds issued by the German government have very low yields and are considered

extremely safe. That justifies why using German yield as the benchmark when constructing the spread is the

convention in the literature (Bernoth et al. (2012), Metiu (2012), De Santis (2014), etc). France has the second

best credit ratings, and its sovereign bond yield remains low during the whole sample period. Spain and Italy

follow and have the next worse credit ratings, with Italy having a much higher public debt level but a better

fiscal position. Then we have three countries exhibiting high credit risk, Ireland, Portugal, and Greece. Ireland

has the worst fiscal position in the sample, and Greece has the highest public debt level among sample countries.
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Figure 1 and Figure 2 show the 10-year sovereign bond spreads of the six sample countries during the sample

periods in level and in first difference, respectively. Sovereign bond spreads start dropping from spring 2009

as global uncertainty decreases and countries recovering from the global financial crisis. However, the spreads

start to skyrocket at the end of 2009, when the Greek problem reveals. The rise is so sharp that it is hard

to reconcile with the gradual deterioration of fundamentals, justifying the use of a regime-switching model to

accommodate such breaks. Regime switch in the sovereign credit risk pricing equation for euro area peripheral

countries is empirically supported (e.g., Favero and Missale (2012), Delatte et al. (2017)). I aim to go beyond

them by allowing cross-sectional interaction in the regime-switching process and using the framework to test

and quantify the non-linear contagion effects among sovereigns. Another important feature of Figure 1 is that

the sovereign bond spreads show high persistency during the sample period. It is necessary to verify that these

variables are stationary since the lack of stationarity will lead to deceptive results. Table 8 presents the results

of stationarity tests for the sovereign bond yield spreads of all six sample countries. Augmented Dickey-Fuller

test and Phillips-Perron test are both applied, showing these series are difference-stationary. Hence we use a

first difference specification.

Based on the empirical literature focusing on the factors that determine individual sovereign credit spread

(Edwards (1983), Edwards (1986), Duffie et al. (2003), Longstaff et al. (2011)), the factors affecting the sovereign

bond yield spreads are associated with (1) common risk factors, (2) spillover effect, (3) country-specific risk

factors, and (4) contagion risk. As for common risk factors, it is found that market risk appetite and uncer-

tainty play an important role in the determination of sovereign risk (Baek et al. (2005)). I use two variables to

proxy the market appetite and uncertainty in the euro area. The first one is the spread between the 3-month

Euro Interbank Offered Rate (Euribor) and the Euro Overnight Index Average (EONIA). The second one is

the VSTOXX Index, which is a forward-looking measure designed to reflect the market’s expectations of future

volatility in the euro area. For both variables, we use the first lag. To allow for the spillover effect, I use

the first two lagged sovereign bond spreads from other countries in the sample. Country-specific default risk

is determined by some low-frequency macroeconomic fundamental variables, including public debt/GDP ratio,

fiscal balance/GDP ratio, GDP growth, and the current account/GDP ratio. These low-frequency variables will

drop out after taking the first difference of the daily data. As stated in the introduction section, contagion is

defined a breakdown of the normal time transmission regime. In this model, the contagion risk is captured by a

rise in the country-specific probability of being in the crisis regime when others are in crisis in the last period.

As in Ait-Sahalia et al. (2014) and Aı̈t-Sahalia et al. (2015), the contagion is probabilistic rather than certain.

A country’s regime-switching process also reflects exposure to common risk factors and country-specific

fundamentals. This paper contributes by explicitly allowing for the role of multi-country contagion in the

regime-switching process so that crises can spread contagiously across countries in a probabilistic way. Again,

we use the two common factors described above to control for inter-dependence in the switching process. It has

been documented that government debt has non-linear effect on sovereign bond spreads (Bernoth et al. (2012),

Delatte et al. (2017)). Due to that reason, I include the country-specific Debt-to-GDP ratio in the switching

equation. Because governments might adjust their debt-to-GDP ratio endogenously in response to shocks to

credit risk, I use the Debt-to-GDP ratio observed a quarter ahead so that it is predetermined with respect to

the bond spread.
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Figure 1: Daily 10-year sovereign bond spreads (in basis points)

Figure 2: First-differenced daily 10-year sovereign bond spreads (in basis points)

4.2 Empirical Results

I implement the estimation methodology outlined above on the first-differenced 10-year sovereign bond yields.

For the modeling of multi-country contagion effect, I adopt the formulation in Pesaran and Pick (2007) and

aggregate the contagion effect from N − 1 remaining countries.5 To be more specific, the regime-switching

equation (3) is modified to

sit =

0 if uit < zit
′γi + λiI(

∑N
j 6=i sjt−1)

1 if uit ≥ zit′γi + λiI(
∑N
j 6=i sjt−1) where uit ∼ N (0, 1)

(9)

Under this formulation, the crisis indicator I(
∑N
j 6=i sjt−1) is a dummy variable that takes the value of one as

5Estimating directed pairwise contagion as in equation (3) poses no theoretical difficulties. The estimation results are available

upon request.

9



long as any of the N−1 remaining countries are in a crisis state at t−1. In summary, the empirical specification

is as follows:

∆yit = αi(sit) + x′itβi(sit) + h
1/2
it (sit)εit for i = 1, . . . , n

sit =

0 if uit < zit
′γi + λiI(

∑N
j 6=i sjt−1)

1 if uit ≥ zit′γi + λiI(
∑N
j 6=i sjt−1) where uit ∼ N (0, 1)

εt ∼ N (0,Σ) and uit ∼ N (0, 1) for i = 1, . . . , n

(10)

where xit = (∆f1t−1,∆f2t−1,∆y1t−1,∆y1t−2, . . . ,∆yNt−1,∆yNt−2)′ are the vector of explanatory variables de-

scribed in section 4.1 in first difference. f1 and f2 correspond to the spread between Euribor and ENOIA,

and the VSTOXX Index, respectively. ∆yit−1,∆yit−2 for i = 1, . . . , N are the vector-autoregressive terms with

two lags. The mean equation of (10) is essentially a regime-dependent VARX model, and the structural model

can be recovered by imposing identification assumptions on Σ. zit = (1,∆f1t−1,∆f2t−1, Debti,tq−1, Si,t−1)′,

together with I(
∑N
j 6=i sjt−1) gives the drivers of the regime-switching process. Notice that Debt-to-GDP ratio

is observed at quarterly frequency, thus the variable has a different time subscript tq. Prior distributions are

provided in Table 9 and Table 10, which are used to initialize the Gibbs Sampler. I run 6000 iterations in total.

The first 1000 “burn-in” iterations are discarded, and the 5000 iterations after that are treated as approximate

sample from the joint posterior distribution.

Table 1 reports the posterior estimates of coefficients in the normal regime, and Table 2 reports the posterior

estimates of the shift parameters (i.e., the changes in parameters when a country switches from the normal to

crisis regime). The tables reveal that the sovereign bond spread pricing functions are highly regime-dependent

as there there are striking shifts in market pricing behaviors. Our identification scheme is based on a rise in

volatility in the crisis regime, and the economic magnitude of that is given by the volatility multiplier parameter

h. Greek yield spread experience an almost eight-fold increase in volatility when it switches to the crisis regime.

Other countries except for France also show high increases in their volatilities, with the posterior means of their

volatility multiplier vary from 2 to 5. In the crisis regimes, all sample countries except France experience a

significantly positive jump in the intercept. As the country with the best fundamental in our sample, France

has a more “tranquil” crisis regime than others. The break of exposures to common risk factors is also worth

noticing since the directions of the shifts are opposite to the sign of exposures in the normal regime. This might

because the risk aversion and uncertainty both start falling since Spring 2009 while the euro area sovereign

spreads begin to skyrocket after 2010. This suggests that the factor cannot help to interpret the sharp increases

in euro area sovereign bond spreads during the European debt crisis. This phenomenon is also documented in

De Santis (2014), where the author finds common risk factors stop being important determinants of European

bond yields. The spillover pattern among sample countries also changes drastically from one regime to the

other. The vector auto-regressive coefficients are much larger in magnitude in the crisis regime, indicating that

regional risk spillovers explain more variations in the sovereign bond spreads during periods of crisis. This

breakdown is associated with an increase in interconnectedness that is beyond what can be explained by the

normal time risk transmission mechanism.
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France(FR) Spain(ES) Italy(IT) Portugal(PT) Ireland(IE) Greece(GR)

α -0.05 0.12 0.16 0.40 -0.17 0.42

[-0.18,0.13] [-0.03,0.32] [0.06,0.26] [0.21,0.60] [-0.44,-0.02] [0.15,0.70]

β1 0.11 0.10 0.05 0.07 0.18 -0.28

[0.05,0.17] [0.05,0.20] [0.01,0.08] [-0.01, 0.13] [0.08,0.30] [-0.36,-0.20]

β2 0.02 0.04 0.04 0.07 0.01 -0.02

[0.01,0.03] [0.03, 0.05] [0.03, 0.04] [0.04, 0.08] [-0.02,0.03] [-0.03, 0.01]

βFR,1 -0.01 -0.07 -0.11 -0.26 -0.30 -0.00

[-0.03, 0.03] [-0.09, -0.05] [-0.13, -0.08] [-0.28,-0.23] [-0.35,-0.25] [-0.06,0.05]

βFR,2 0.02 0.03 0.03 0.04 0.23 -0.10

[-0.02, 0.06] [-0.02, 0.08] [-0.01, 0.05] [0.01, 0.08] [0.18, 0.27] [-0.15, -0.03]

βES,1 -0.01 0.07 0.02 0.22 -0.05 0.03

[-0.04, 0.02] [0.02,0.15] [-0.04, 0.07] [0.19,0.24] [-0.08,0.00] [-0.04, 0.08]

βES,2 -0.01 -0.00 0.03 0.02 0.18 0.10

[-0.02, 0.01] [-0.02,0.02] [0.01,0.03] [-0.01,0.04] [0.15, 0.21] [0.07, 0.13]

βIT,1 0.02 -0.01 -0.01 0.05 -0.02 -0.09

[0.01, 0.02] [-0.03,0.00] [-0.03,0.01] [0.03, 0.07] [-0.04, 0.01] [-0.12,-0.06]

βIT,2 0.01 0.00 0.02 -0.02 0.01 0.08

[0.00, 0.01] [-0.00,0.01] [0.01, 0.02] [-0.02,-0.01] [0.00,0.01] [0.06,0.10]

βPT,1 -0.21 -0.12 -0.00 -0.03 -0.16 0.06

[-0.24, -0.16] [-0.14, -0.06] [-0.03, 0.01] [-0.06, -0.01] [-0.20, -0.12] [0.03, 0.12]

βPT,2 0.06 -0.04 -0.03 -0.15 0.03 0.09

[0.01, 0.08] [-0.06, 0.00] [-0.07, -0.01] [-0.20, -0.12] [-0.05, 0.06] [0.06, 0.13]

βIE,1 0.13 0.18 0.07 0.14 0.15 -0.07

[0.11, 0.17] [0.09, 0.23] [0.05, 0.10] [ 0.11, 0.17] [0.10, 0.17] [-0.10, -0.03]

βIE,2 0.04 0.03 0.03 0.11 -0.06 0.06

[0.02, 0.05] [-0.00, 0.05] [0.01, 0.05] [ 0.09, 0.13] [-0.09,-0.03] [0.03, 0.08]

βGR,1 -0.04 -0.06 -0.03 -0.05 0.12 0.01

[-0.06, -0.03] [ -0.07, -0.05] [-0.05, -0.02] [-0.07, -0.00] [0.09, 0.14] [-0.01, 0.03]

βGR,2 -0.03 -0.01 -0.02 -0.02 -0.02 0.01

[-0.03, -0.02] [-0.02, 0.01] [-0.02, -0.01] [ -0.03, -0.02] [-0.02, -0.01] [0.00,0.01]

Table 1: 95% credible intervals and posterior mean for the normal regime parameters. β1 is the coefficient on the

lagged first-differenced spread between Euribor and ENOIA, β2 is the coefficient on the lagged first-differenced

VSTOXX Index. βi,t−k is the coefficient on ∆yit−k, for i = FR,ES, IT, PT, IE,GR and k = 1, 2. Coefficients

significant at the 95 % level are in bold.
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France(FR) Spain(ES) Italy(IT) Portugal(PT) Ireland(IE) Greece(GR)

∆α 0.27 2.35 2.34 4.71 3.94 8.19

[-0.12,0.60] [1.29,3.24] [1.73,3.39] [2.84,6.77] [2.39,5.18] [2.38,12.77]

∆β1 -0.06 -2.66 -1.34 -2.24 -2.93 -7.76

[-0.15,0.12] [-2.87,-2.37] [-1.77, -1.06] [-3.03, -1.20] [-3.67,-2.42] [-9.31, -6.26]

∆β2 -0.03 0.06 -0.17 0.12 -0.08 -0.10

[-0.05, -0.00] [-0.01, 0.22] [-0.36, -0.05] [-0.08,0.31] [-0.25, 0.06] [-0.41, 0.14]

∆βFR,1 0.33 0.07 -0.07 0.48 0.70 -3.29

[0.26, 0.41] [-0.03, 0.19] [-0.23, 0.19] [0.23, 0.79] [0.39, 0.91] [-4.03, -2.63]

∆βFR,2 0.01 0.83 0.46 1.39 1.04 1.11

[-0.07, 0.11] [0.59, 0.94] [0.28,0.59] [1.06, 1.62] [0.47,1.33] [0.33, 2.13]

∆βES,1 0.21 -0.52 -0.12 -1.13 -1.33 3.07

[0.15, 0.25] [-0.63, -0.37] [ -0.25, -0.01] [ -1.34, -0.79] [-1.63, -0.65] [1.75, 3.74]

∆βES,2 -0.13 -0.17 -0.31 -0.02 -0.20 -0.26

[-0.15, -0.11] [-0.26, -0.07] [-0.42, -0.20] [-0.16,0.05] [-0.30, -0.10] [-0.47, -0.03]

∆βIT,1 -0.07 0.21 0.20 0.20 0.20 0.03

[-0.10, -0.01] [0.10, 0.32] [0.12, 0.26] [0.13, 0.27] [0.10,0.34] [-0.17,0.20]

∆βIT,2 0.03 -0.03 0.03 0.04 0.03 -0.04

[0.02, 0.05] [-0.06, -0.00] [0.01, 0.05] [0.00, 0.10] [-0.01,0.05] [-0.10, 0.03]

∆βPT,1 0.71 0.13 -0.54 0.23 -0.42 -2.78

[0.62, 0.76] [-0.05, 0.29] [-0.79, -0.10] [-0.16, 0.89] [-0.70,-0.20] [-3.17, -2.21]

∆βPT,2 0.13 0.00 -0.15 -1.39 -1.23 -2.17

[0.061, 0.23] [-0.08,0.12] [-0.47, 0.25] [-1.64, -1.07] [-1.47,-0.90] [-2.68, -1.60]

∆βIE,1 -0.29 -0.31 -0.20 0.66 0.69 1.86

[-0.36, -0.25] [-0.43, -0.23] [-0.56, 0.00] [0.31, 0.89] [0.30, 1.03] [1.46, 2.23]

∆βIE,2 -0.12 0.02 0.06 -0.21 0.02 -0.31

[-0.14, -0.11] [-0.03, 0.08] [-0.00, 0.12] [-0.27,-0.12] [-0.08, 0.10] [-0.60, -0.07]

∆βGR,1 0.16 0.18 -0.00 0.22 0.22 0.18

[0.13, 0.19] [0.12,0.23] [-0.09, 0.08] [0.16, 0.27] [0.10,0.32] [-0.12, 0.52]

∆βGR,2 0.03 -0.05 0.03 0.06 -0.07 -0.14

[0.01, 0.05] [-0.08, -0.01] [0.02, 0.05] [0.00, 0.12] [-0.11, -0.04] [-0.19, -0.06]

h 1.11 2.71 3.65 4.89 4.46 7.80

[1.00,1.36] [2.32,3.21] [3.10,4.30] [4.31, 5.54] [3.93, 5.07] [6.90, 8.82]

Table 2: 95% credible intervals and posterior mean for the shift parameters in the mean equation. A typical

shift parameter ∆β = β(s = 1)−β(s = 0), is the change of that parameter from normal regime to crisis regime.

Coefficients significant at the 95 % level are in bold.

To look closer into the roles played by countries in the regional risk spillover, I calculate the variance de-

composition network as in Diebold and Yılmaz (2014) for the two regimes. For the orthogonalization of shocks,

instead of using Cholesky decomposition, which requires an ordering of variables, I adopt the generalized im-

pulse response function from Pesaran and Shin (1998). Table 3 and Table 4 report the variance decomposition

network when all countries are in normal and crisis regime, respectively. The tables summarize all dependencies

up to lag h by means of the forecast error variance decomposition. A typical element on the ith row and jth
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column gives the percentage of h-step ahead forecast error variance of ∆yit that is due to innovations in ∆yjt.

The row sums are ones as a result of normalization, and the kth column sum gives the from-degree of country k

(i.e., total spillover from k). Comparing the variance decomposition networks during normal and crisis regime

reveals some interesting features. Spain, Italy, and Portugal are the most important systemically risk contrib-

utors. On the other hand, the two countries that are considered as the origin of the “fever”, do not propagate

a lot of risk to the system. This result is also documented in Caporin et al. (2018) and Dumitru and Holden

(2019). 6 On top of their findings, we find that while Italy is the hub of the network in the normal regime,

and its role gets replaced by Portugal in the crisis regime. This might because Portugal is the systemically

most important debtor based on the network structure of debt among sample countries. When the system is

in stress, the credit risk from Portugal quickly spreads to other countries via debt exposure. On the other

hand, Greece plays a less important role in directly propagating shocks to others. This might be explained by

the fact that investors start to isolate Greek bonds from other countries when the Greek default is inevitable.

However, it will be seen later that Greek plays an important role in non-linear contagion as its break comes

earlier and makes other countries more likely to switch to the crisis regime. Overall, we confirm that there is

strong evidence of parameters instability during our sample period. Regional spillovers gain importance during

periods of stress, with Italy, Spain, and Portugal playing important roles in directly spill over risk to others.

Common risk factors, on the other hand, fail to explain the sharp increases in euro area sovereign bond spreads.

France(FR) Spain(ES) Italy(IT) Portugal(PT) Ireland(IE) Greece(GR)

France(FR) 14.82 20.56 28.54 15.90 12.81 7.38

Spain(ES) 12.52 21.20 28.75 16.55 13.61 7.36

Italy(IT) 12.38 20.50 29.07 16.56 13.57 7.92

Portugal(PT) 11.48 19.91 27.91 18.25 14.53 7.93

Ireland(IE) 11.43 19.76 27.65 17.42 15.85 7.88

Greece(GR) 10.98 18.40 27.57 16.52 13.60 12.92

From-Degree 73.61 120.33 169.50 101.19 83.97 51.40

Table 3: Variance decomposition network when all countries are in normal regime. The prediction horizon is 5

days.

6Caporin et al. (2018) documents Italy’s role as the hub of the network of sovereign contagion during the European debt crisis.

Spain and Portugal’s important roles are also found in Dumitru and Holden (2019). Both studies find other countries’ bond spreads

decouple from the Greek bond spread.
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France(FR) Spain(ES) Italy(IT) Portugal(PT) Ireland(IE) Greece(GR)

France(FR) 17.17 15.45 18.94 32.27 11.57 4.60

Spain(ES) 8.24 34.22 25.23 18.41 11.72 2.19

Italy(IT) 9.20 15.50 22.33 35.23 13.07 4.66

Portugal(PT) 15.00 5.46 12.07 46.24 17.38 3.85

Ireland(IE) 11.41 17.66 16.86 34.19 16.05 3.83

Greece(GR) 8.22 13.18 21.57 29.26 22.36 5.42

From-Degree 69.24 101.47 117.0 195.59 92.15 24.55

Table 4: Variance decomposition network when all countries are in crisis regime. The prediction horizon is 5

days.

Table 5 reports the posterior estimates of coefficients in the auxiliary regime-switching equation. The

first important observation is that common risk factors do not play a role in determining the probabilities of

regime-switching. For a country, its lagged Debt-to-GDP ratio, past state, and other countries’ past states

(the contagion component) determine its transition probability. As documented in Bernoth et al. (2012) and

Delatte et al. (2017), government debt level has an non-linear effect on sovereign bond spreads. For all sample

countries except Italy, a higher Debt-to-GDP ratio corresponds to a higher probability of entering the crisis

regime. A country’s own past state largely affects the transition probability. A normal state is much more likely

to be followed by a normal state, while a crisis state increases the probability of getting another crisis state in

the next period by a large margin. Apart from a country’s own past states, other countries’ past states also

significantly affect the country’s transition probability. There is strong evidence of multi-country contagion.

Except for Greece, other countries’ transition probabilities to crisis regime all significantly increase when at least

one of their neighbors are in crisis in the past state. Greece is not affected by multi-country contagion since

its break comes earlier than others, and conditional on its own past states, other countries’ past states do not

have an additional effect on its transition probability. For France and Spain, the contagion effect on transition

probability is equivalent to an increase in the Debt-to-GDP ratio of around 20%. Portugal and Ireland are

subject to an even large contagion effect, and its effect on transition probability is equivalent to an increase

in the Debt-to-GDP ratio of around 40%. To better interpret the intensity of contagion, I conduct a partial

effect analysis since the coefficients alone in the non-linear regime-switching process could be less indicative.

Table 6 shows the partial effect (PE) of contagion on transition probabilities when countries’ other switching

variables are at different percentiles. Since a country’s own past state is discrete, we separately analyze the

partial effect on transition probability from normal to crisis and crisis to crisis. The economic magnitude of

the contagion effect is large. It contributes to more than a 10% increase in transition probability from normal

to crisis regime for France, Spain, Portugal, and Ireland, given their Debt-to-GDP ratio at any percentiles

considered. Especially for Portugal and Ireland, multi-country contagion is associated with more than 25% in-

creases in transition probabilities when their Debt-to-GDP ratio is at the median level. The incremental effect

of contagion is smaller when Portugal’s debt level is high, as its own fundamentals now contribute a lot to the

switching. The contagion effect on transition probability from crisis to crisis regime is also sizeable, although

smaller for most countries. The smaller partial effect is because the probability of staying in the crisis regime is

already high, making the incremental effect of contagion smaller in magnitude. Overall, I find strong evidence
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of multi-country contagion during the sample period. It plays a more important role than common risk factors

and even country-specific fundamentals in determining the transition probability to crisis regime.

France(FR) Spain(ES) Italy(IT) Portugal(PT) Ireland(IE) Greece(GR)

γ1 -1.895 -2.071 -2.161 -1.672 -1.841 -1.648

[-1.939,-1.855] [-2.094, -2.047] [-2.214, -2.076] [-1.738, -1.614] [-1.897, -1.810] [-1.717,-1.621]

γ2 -0.008 0.007 0.005 -0.006 -0.000 0.008

[-0.0168, -0.002] [-0.004, 0.016] [-0.002, 0.012] [-0.015,0.005] [ -0.011, 0.014] [-0.002, 0.014]

γ3 0.001 -0.000 0.002 -0.001 -0.001 -0.002

[-0.001,0.004] [-0.002, 0.001] [-0.001, 0.004] [-0.002, 0.001] [-0.003, 0.001] [-0.003,-0.000]

γ4 0.028 0.026 -0.004 0.027 0.019 0.025

[0.025, 0.030] [0.023, 0.031] [-0.007, 0.001] [0.026, 0.028] [0.018, 0.020] [0.021, 0.027]

γ5 1.586 1.896 2.407 0.827 1.353 2.052

[1.458,1.741] [1.732,2.133] [ 2.312, 2.484] [0.732, 0.985] [1.254,1.489] [1.964, 2.128]

λ 0.444 0.410 0.531 0.872 0.671 0.041

[0.337, 0.509] [0.339,0.455] [0.469, 0.590] [0.794,0.922] [0.582, 0.748] [-0.046, 0.129]

Table 5: 95% credible intervals and posterior mean of the coefficients in the auxiliary regime-switching equation.

γ1 is the constant of the switching equation, γ2 is the coefficient on the lagged first-differenced spread between

Euribor and ENOIA, γ3 is the coefficient on the lagged first-differenced VSTOXX Index, γ4 is the coefficient on

the lagged Debt-to-GDP ratio and γ5 is the coefficient on own past state. λ is the coefficient of the contagion

effect. Coefficients significant at the 95 % level are in bold.

Coefficient (λi) PE at 50th PE at 75th PE at 90th

(1) Normal to Crisis

France(FR) 0.444 14.50% 13.60% 13.41%

Spain(ES) 0.410 14.49% 15.59% 16.10%

Italy(IT) 0.531 3.62% 3.62% 3.62%

Portugal(PT) 0.872 20.76% 14.24% 8.57%

Ireland(IE) 0.671 25.02% 26.00% 25.19%

(1) Crisis to Crisis

France(FR) 0.444 1.59% 1.28% 1.23%

Spain(ES) 0.410 6.05% 4.54% 3.53%

Italy(IT) 0.531 18.42% 18.42% 18.42%

Portugal(PT) 0.872 6.83% 3.60% 1.64%

Ireland(IE) 0.671 15.73% 8.85% 7.07%

Table 6: Partial effect (PE) of contagion at different percentiles of other regime-driving variables. For each

sample country, the effect on transition probability from normal to crisis and crisis to crisis are given the the

upper panel (1) and lower panel (2), respectively. I consider the lagged Debt-to-GDP ratio at their 50th, 75th

and 90th percentiles.
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(a) France

(b) Spain

(c) Italy

(d) Portugal

(e) Ireland

(f) Greece

Figure 3: Country-specific smoothed probabilities for crisis regime.
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The model also produces country-specific probabilities for each regime. Figure 3 reports the crisis probability

for each country. These figures provide some interesting results. Firstly, sample countries’ regimes are not fully

synchronized, and there is a considerable degree of heterogeneity in the cross-sectional regime-switching patterns.

Secondly, the crisis regime is not continuous, hindering the usefulness of sample splitting type of contagion test

as they rely on ex-post identification of the crisis regime, which implicitly assumes that the crisis regime is

continuous and homogeneous. These figures also reveal why Greece is not subject to the contagion effect from

others. At the end of 2009, while other countries are in the normal regime, Greece is the first country that

enters the crisis regime as its trouble reveals in December 2009, when it admits its debts have reached 300bn

euros, the highest in modern history. Thus, conditional on its own past states, other countries’ states do not

affect Greece’s transition probability anymore.

5 Conclusion

This paper contributes by proposing a new methodological framework of the multi-country contagion problem.

It develops a procedure to test and quantify contagion based on a mutual exciting regime-switching model.

Contagion is defined as a rise in the transition probability to the crisis regime when other countries are in

crisis in the past state. The model has several advantages. Firstly, it does not rely on ex-post identification of

the crisis regime—this type of identification scheme implicitly assume that the crisis regime is continuous and

homogeneous. However, from the empirical results, we can see that the country-specific crisis regime is neither

continuous nor homogeneous. Secondly, different from the strand of literature that assumes the crisis regime

is associated with some extreme values of the observed dependent variable, we let the crisis state to be an

unobserved stochastic process. This is motivated by the fact that crises, in many cases, are more complicated

and can not be sufficiently captured by the tail events of one particular value. Thirdly, we explicitly model

multi-country contagion as a source of regime-switching. We can quantitatively analyze the roles of different

mechanisms, especially multi-country contagion, in determining the transition process. Lastly, this framework

accommodates a rich contagion pattern. In addition to a break in the mean equation, which is the parameters

instability in the asset pricing equation, the model also accommodates a break in the second moment. The

dynamics in the variance could be especially important for crisis episodes where increases in volatility are the

major symptomatic.

The project also contributes from an empirical point of view. There is an extensive body of research

examining sovereign bond prices in the context of the European debt crisis and whether there is a contagion

effect remains the center of the debate. Empirical evidence is very much mixed. The empirical study in this

paper provides some new important findings. First of all, there are striking shifts in market pricing behaviors.

There is not only a jump in the intercept but also breaks in the exposures to common risk factors and the

intensities of the regional spillover effect. It is vitally important to take into account this regime-dependent

pricing behavior. Secondly, countries are subject to a strong contagion effect. Actually, contagion plays a more

important role than common risk factors and country-specific fundamentals in determining their transition

probabilities to the crisis regime.
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Appendices

(A) Supplementary figures and tables

Country
Public Debt (%GDP,

average 2008-2012)

GDP Growth(%, av-

erage 2008-2012)

Fiscal

Position(%GDP,

average 2008-2012)

Credit Ratings, 2012

(Moody’s, Fitch,

S&P)

Germany 70.2 0.7 -1.7 Aaa,AAA,AAA

France 75.9 0.6 -5.4 Aaa,AAA,AA+

Italy 108.7 0.6 -3.7 A3,A+,BBB+

Spain 47.5 0.6 -7.9 A3,AA-,A

Ireland 55.0 -0.3 -14.1 Ba1,BBB+,BBB+

Portugal 81.1 0.5 -7.4 Ba3,BBB-,BB

Greece 123.1 0.2 -10.9 Ca,CCC,CC

Table 7: Macroeconomic summary statistics for sample countries (source: ECB)

Variable
Augmented Dickey-Fuller Phillips-Perron

Level First Difference Level First Difference

FR -2.16 -8.58*** -11.7 -753***

ES -2.37 -9.41*** -12.5 -616***

IT -0.09 -9.75*** -2.97 -682 ***

PT -0.59 -8.98*** -2.44 -600***

IE -1.83 -9.25*** -8.01 -730***

GR 0.58 -10.22*** -0.31 -611***

Table 8: Stationarity tests of 10-year sovereign bond spreads for six sample countries. ***, **, * denote the

rejection of unit root hypothesis at the 1%, 5%, 10% level of significance, respectively.
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(B) Prior Distributions

Parameters (sit = 0) Mean Std.dev Shift Parameters Mean Std.dev

α 0 10 ∆α 0.1 10

β1 0 10 ∆β1 0 10

β2 0 10 ∆β2 0 10

βFR,1 0 10 ∆βFR,1 0 10

βFR,2 0 10 ∆βFR,2 0 10

βES,1 0 10 ∆βES,1 0 10

βES,2 0 10 ∆βES,2 0 10

βIT,1 0 10 ∆βIT,1 0 10

βIT,2 0 10 ∆βIT,2 0 10

βPT,1 0 10 ∆βPT,1 0 10

βPT,2 0 10 ∆βPT,2 0 10

βIE,1 0 10 ∆βIE,1 0 10

βIE,2 0 10 ∆βIE,2 0 10

βGR,1 0 10 ∆βGR,1 0 10

βGR,2 0 10 ∆βGR,2 0 10

− h 1.2 10

Table 9: Mean and standard deviation of priors on the main equation. The table shows the prior distributions

for a typical country. We use the same sets of prior distributions for each sample country.

Parameters (sit = 0) Mean Std.dev

γ1 2 10

γ2 0 10

γ3 0 10

γ4 0 10

γ5 -2 10

λ 0 10

Table 10: Mean and standard deviation of priors on the auxiliary regime-switching equation. The table shows

the prior distributions for a typical country. We use the same sets of prior distributions for each sample country.

(C) Sampling from Full Conditionals

To sample from the joint posterior distribution of full parameters ψ given data, we sample from the following

conditional posteriors iteratively:
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(1) ψ1 = {α,β}

We first rearrange equation (1) as a linear regression model given other parameters,

h−11 (s1t)(y1t − α1,0 − α1,1s1t − x′1tβ1,0 − (x1t ∗ s1t)′β1,1) = ε1t

...

h−1n (snt)(ynt − αn,0 − αn,1snt − x′ntβn,0 − (xnt ∗ snt)′βn,1) = εnt

(11)

Let ỹit = h−1i (sit) ∗ yit, x̃it = (h−1i (sit), h
−1
i (sit) ∗ sit, h−1i (sit)x

′
it, h

−1
i (sit) ∗ sit ∗ x′it)′. Let Ỹi = (ỹi1, . . . , ỹiT )′

and X̃i = (x̃i1, . . . , x̃iT )′. Denote β̃i = (αi,0, αi,1,β
′
i,0,β

′
i,1)′ so that equation (9) can be rewritten as:

ỹ1t = x̃′1tβ̃1 + ε1t

...

ỹnt = x̃′ntβ̃n + εnt

(12)

Given ψ2, ψ3, ψ4, with ỹit and x̃it being observed, equation (10) is a system of linear regressions with known

variance covariance matrix. I use normal prior on β̃i

β̃i ∼ N (β̃
0

i , σ
2
i P

0
i ) for i = 1, . . . , n (13)

Subscript 0 and 1 represent the parameters for regime 0 and 1, respectively. Superscript 0 and 1 indicate the

prior and posterior, respectively. σ2
i is the ith diagonal entry of Σ. The posterior distribution of β̃i is given by:

β̃i ∼ N (β̃
1

i , σ
2
i P

1
i ) for i = 1, . . . , n (14)

where P 1
i = ((P 0

i )−1 + X̃ ′iX̃i)
−1 and β̃

1

i = P 1
i ((P 0

i )−1β̃
0

i + X̃ ′iỸi)

(2) ψ2 = {Σ}

Given ψ1, ψ3, ψ4, yt ∈ Rn for t = 1, . . . , T follows a multivariate normal distribution with known mean µ ∈ Rn.

yt =


y1t
...

ynt

 ∼ N (µ,Σ) (15)

The natural conjugate prior for a covariance matrix is the inverse Wishart (IW) prior, thus I impose:

Σ ∼ IW(ν0,Λ0) (16)

And the posterior of Σ is

Σ ∼ IW(T + ν0, Sµ + Λ0) (17)

where Sµ =
∑T
t=1(yt − µ)(yt − µ)′ and µ = (µ1, . . . , µn)′ ∈ Rn with µi = h−1i (sit)(αi,0 − αi,1sit − x′itβi,0 −

(xit ∗ sit)′βi,1).

(3) ψ3 = {h}

yit − αi,0 − αi,1sit − x′itβi,0 − (xit ∗ sit)′βi,1 = hi(sit)εit (18)
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Denote x̌i = yit − αi,0 − αi,1sit − x′itβi,0 − (xit ∗ sit)′βi,1. Given ψ1, ψ3 and ψ4, and with x̌i being is observed,

and a natural way to interpret equation hi is that it is the ratio of the standard deviation of x̌it under high and

low volatility regime:

hi =
σ(x̌itI(sit = 1))

σ(x̌itI(sit = 0))
for i = 1, . . . , n (19)

Given ψ2, the variance of low volatility regime is known, which is given by the diagonal entries of Σ. Further

condition on ψ1 and ψ3, the inference on hi boils down to the inference of the variance of a normally distributed

univariate random variable with known mean.

x̌itI(sit = 1) ∼ N (µ̌i, σ̌i
2) for i = 1, . . . , n (20)

We impose an inverse gamma prior:

σ̌2
i ∼ g−1(

ν0

2
,
ν0(σ0)2

2
) for i = 1, . . . , n (21)

which leads to an inverse gamma posterior:

σ̌2
i ∼ g−1(

ν1

2
,
ν0(σ1)2

2
) for i = 1, . . . , n (22)

where ν1 = ν0 + T , and (σ1)2 = 1
ν1 (ν0(σ0)2 +

∑
i∈Bi

(x̌itI(sit = 1)− µ̌i)2. We denote Bi = {i | sit = 1} as the

set of high volatility observations for country i. Since our identification restriction is hi > 1, we keep drawing

from the posterior until such restriction is satisfied.

(4) ψ4 = {ST }

The key feature of simulation-based Bayesian inference of hidden Markov model is the simulation of the states

from the joint conditional distribution of all states given other parameters in the model. The procedure for

drawing states is based on Albert and Chib (1993). We avoid the intractable simulation of the whole chain at a

time by drawing a single state at each step recursively. The conditional distribution that we hope to simulate

from is P (ST | ψ−4), which could be written as:

P (ST | ψ−4,ΩT ) = P (s1T , . . . , snT | ψ−4,ΩT )× . . .

× P (s1t, . . . , snt | ψ−4,ΩT , St+1)× . . .

× P (s11, . . . , sn1 | ψ−4,ΩT , S2)

(23)

where St = (s11, . . . , sn1, . . . , s1t, . . . , snt) is the history of states up to time t, as defined earlier. And St+1 =

(s1t+1, . . . , snt+1, . . . , s1T , . . . , snT ) is the future of states from t + 1 to T . Ωt = (Yt, Xt, Zt), which is the

collection of information on dependent, independent variables and exogenous drivers of the regime switching

process up to time t. A typical elements in equation (21), excluding the terminal point, is

P (s1t, . . . , snt | ψ−4,ΩT , St+1) (24)

By the argument in Albert and Chib (1993),

P (s1t, . . . , snt | ψ−4,ΩT , St+1) ∝

P (s1t, . . . , snt | ψ−4,Ωt)× P (s1t+1, . . . , snt+1 | s1t, s2t,Ωt,ψ−4)
(25)

P (s1t, . . . , snt | ψ−4, St+1) is the product of two terms. The first term is the mass function of (s1t, . . . , snt)

given Ωt and other parameters in the model. This term can be derived iteratively by a prediction step and an

21



update step. These mass functions P (s1t, . . . , snt | ψ−4,Ωt)Tt=1 are stored in a T × 2n matrix F since there are

2n possible combinations of (s1t, . . . , snt) for each t. The second term is the transition probability, which can

be derived given ψ6. The last state (s1T , . . . , snT ) is simulated using P (s1T , . . . , snT | ψ−4,ΩT ), which is the

last row of F . And then the remaining states can be simulated using equation (23).

(5) θ5 = {S∗T }

Performing direct inference on {γ,λ} is complicated since no conjugate prior exists for the parameters of the

auxiliary probit regression model. In the spirit of Kaufmann (2015), I overcome this problem by augmenting

the original model in the following way:

s∗it = zit
′γi +

∑
j 6=i

λij ∗ sj,t−1 + uit for i = 1, . . . , n (26)

Given ψ4, ψ6, zit
′γi +

∑
j 6=i λij ∗ sj,t−1 can be calculated. And uit is draw from a standard normal distribution

that is consistent with the prediction of the random utility model. That is, a draw uit will be accepted only ifzit
′γi +

∑
j 6=i λij ∗ sj,t−1 + uit ≥ 0 if sit = 1

zit
′γi +

∑
j 6=i λij ∗ sj,t−1 + uit < 0 if sit = 0 for i = 1, . . . , n

(27)

When we have our first accepted draw u
(1)
it , the latent index s∗it is computed as s∗it = zit

′γi+
∑
j 6=i λij∗sj,t−1+u

(1)
it

(6) ψ6 = {γ,λ}

s∗it = z̃′itγ̃i + uit for i = 1, . . . , n (28)

Given ψ4 and ψ5, we have a linear regression model, where z̃it = (zit
′, s−i

′)′ and s∗it are observed. γ̃i = (γ′i,λi
′)′.

Again, I impose a conjugate normal prior:

γ̃i ∼ N (γ̃0
i ,M

0
i ) for i = 1, . . . , n (29)

which leads to normal posterior:

γ̃i ∼ N (γ̃1
i ,M

1
i ) for i = 1, . . . , n (30)

where M1
i = ((M0

i )−1 + Z̃ ′iZ̃i)
−1 and γ̃1

i = M1
i ((M0

i )−1γ̃0
i + Z̃ ′iS

∗)
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M. Dungey, R. Fry, B. González-Hermosillo, and V. Martin. Contagion in international bond markets during

the russian and the ltcm crises. Journal of Financial Stability, 2(1):1–27, 2006.

S. Edwards. Ldc’s foreign borrowing and default risk: An empirical investigation, 1983.

23



S. Edwards. The pricing of bonds and bank loans in international markets: An empirical analysis of developing

countries’ foreign borrowing. European Economic Review, 30(3):565–589, 1986.

C. Favero and A. Missale. Sovereign spreads in the eurozone: which prospects for a eurobond? Economic

Policy, 27(70):231–273, 2012.

K. J. Forbes and R. Rigobon. No contagion, only interdependence: measuring stock market comovements. The

journal of Finance, 57(5):2223–2261, 2002.
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